3 Functional Near - Infrared Spectroscopy ( fNIRS ) : Principles and Neuroscientific Applications

نویسندگان

  • José León-Carrión
  • Umberto León-Domínguez
چکیده

fNIRS is a device designed to detect changes in the concentration of oxygenated (oxyHb) and deoxygenated (deoxyHb) haemoglobin molecules in the blood, a method commonly used to assess cerebral activity. Over the last decade, functional near-infrared spectroscopy (fNIRS) has widely extended its applications due to its capacity to quantify oxygenation in blood and organic tissue in a continuous and non invasive manner (Chance & Leigh, 1977; Villringer & Chance, 1997). This technique is an effective, albeit ‘indirect’, optical neuroimaging method that monitors hemodynamic response to brain activation, on the basis that neural activation and vascular response are tightly coupled, so termed ‘neurovascular coupling’. Different studies show that neural activity and hemodynamic response maintain a lineal relationship (Arthurs & Boniface, 2003; Logothetis et al., 2001), suggesting that these changes in hemodynamic response could provide a good marker for assessing neural activity. In neuroscience, functional near-infrared spectroscopy (fNIRS) is used to measure cerebral functions through different chromophore mobilization (oxygenated haemoglobin, deoxygenated haemoglobin and cytochrome c-oxidase) and their timing with concrete events. Due to methodological and theoretical problems associated with cytochrome c-oxidase functioning (Cyt-Ox) (see section 3.2.), current neuroscience studies on cerebral functions only assesses and analyzes oxyHb and deoxyHb mobilizations. These chromophore mobilizations are directly related to the cerebral blood flow (CBF) associated with an event and the physiological reactions provoked by the brain’s functional state (fNIRS measures these reaction in the cerebral cortex). The assessment of these taskrelated mobilizations performed in light of a base line established by the researcher him/herself. The difference in oxyHb and deoxyHb concentrations at baseline and at task performance determines the location in the cortex of an increase or decrease in CBF. An increase in CBF is associated with cerebral activity, making the temporal and spatial correlation between CBF and task a determinant of cerebral function. This capacity to study cerebral functions, both spatial and temporal, is what gives name to the technique described in this chapter: functional near-infrared spectroscopy (fNIRS). fNIRS has become a valuable neuroimaging technique, novel in its easy application and characterized by its small size, portability, and reliability. Although relatively new to the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Application of functional near-infrared spectroscopy in psychiatry

Two decades ago, the introduction of functional near-infrared spectroscopy (fNIRS) into the field of neuroscience created new opportunities for investigating neural processes within the human cerebral cortex. Since then, fNIRS has been increasingly used to conduct functional activation studies in different neuropsychiatric disorders, most prominently schizophrenic illnesses, affective disorders...

متن کامل

Functional near-infrared spectroscopy: a continuous wave type based system for human frontal lobe studies

Functional Near-Infrared Spectroscopy (fNIRS) is an optical non-invasive brain monitoring technology that registers changes in hemodynamic responses within the cortex of the human brain. Over the last decades fNIRS became a promising method in neurosciences: it is non-invasive, portable and can be used in long term studies. All these advantages make it suitable for educational purposes as well....

متن کامل

The Feasibility of Using Wearable Functional Near-Infrared Spectroscopy (fNIRS) to Study Hemodynamic Response during Mental Arithmetic Task

Functional near-infrared spectroscopy (fNIRS) is the promising non-invasive technique for brain-computer interface (BCI) for brain signal acquisition. Wearable multi-channel fNIRS devices that can provide much comport for applications and researches are commercially available in the market recently. In this study, we research possibility of the wearable multi-channel fNIRS device by evaluating ...

متن کامل

Event-related potentials (ERPs) and hemodynamic (functional near-infrared spectroscopy, fNIRS) as measures of schizophrenia deficits in emotional behavior

Recent research evidences supported the significant role of multimethodological neuroscientific approach for the diagnosis and the rehabilitative intervention in schizophrenia. Indeed both electrophysiological and neuroimaging measures in integration each other appear able to furnish a deep overview of the cognitive and affective behavior in schizophrenia patients (SPs). The aim of the present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012